Mathematical Programs with Geometric Constraints in Banach Spaces: Enhanced Optimality, Exact Penalty, and Sensitivity
نویسندگان
چکیده
In this paper we study the mathematical program with geometric constraints such that the image of a mapping from a Banach space is included in a nonempty and closed subset of a finite dimensional space. We obtain the nonsmooth enhanced Fritz John necessary optimality conditions in terms of the approximate subdifferential. In the case where the Banach space is a weakly compactly generated Asplund space, the optimality condition obtained can be expressed in terms of the limiting subdifferential, while in the general case it can be expressed in terms of the Clarke subdifferential. One of the technical difficulties in obtaining such a result in an infinite dimensional space is that no compactness result can be used to show the existence of local minimizers of a perturbed problem. In this paper we employ the celebrated Ekeland’s variational principle to obtain the results instead. The enhanced Fritz John condition allows us to obtain the enhanced Karush– Kuhn–Tucker condition under the pseudo-normality and the quasi-normality conditions which are weaker than the classical normality conditions. We then prove that the quasi-normality is a sufficient condition for the existence of local error bounds of the constraint system. Finally we obtain a tighter upper estimate for the subdifferentials of the value function of the perturbed problem in terms of the enhanced multipliers.
منابع مشابه
Mangasarian-Fromovitz and Zangwill Conditions For Non-Smooth Infinite Optimization problems in Banach Spaces
In this paper we study optimization problems with infinite many inequality constraints on a Banach space where the objective function and the binding constraints are Lipschitz near the optimal solution. Necessary optimality conditions and constraint qualifications in terms of Michel-Penot subdifferential are given.
متن کاملMathematical Programs with Equilibrium Constraints: Enhanced Fritz John-conditions, New Constraint Qualifications, and Improved Exact Penalty Results
Mathematical programs with equilibrium (or complementarity) constraints (MPECs for short) form a difficult class of optimization problems. The standard KKT conditions are not always necessary optimality conditions due to the fact that suitable constraint qualifications are often violated. Alternatively, one can therefore use the Fritz John-approach to derive necessary optimality conditions. Whi...
متن کاملMathematical Programs with Complementarity Constraints in Banach Spaces
We consider optimization problems in Banach spaces involving a complementarity constraint defined by a convex cone K. By transferring the local decomposition approach, we define strong stationarity conditions and provide a constraint qualification under which these conditions are necessary for optimality. To apply this technique, we provide a new uniqueness result for Lagrange multipliers in Ba...
متن کاملVariational Analysis of Evolution Inclusions
The paper is devoted to optimization problems of the Bolza and Mayer types for evolution systems governed by nonconvex Lipschitzian differential inclusions in Banach spaces under endpoint constraints described by finitely many equalities and inequalities. with generally nonsmooth functions. We develop a variational analysis of such problems mainly based on their discrete approximations and the ...
متن کاملUsing an Efficient Penalty Method for Solving Linear Least Square Problem with Nonlinear Constraints
In this paper, we use a penalty method for solving the linear least squares problem with nonlinear constraints. In each iteration of penalty methods for solving the problem, the calculation of projected Hessian matrix is required. Given that the objective function is linear least squares, projected Hessian matrix of the penalty function consists of two parts that the exact amount of a part of i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM Journal on Optimization
دوره 23 شماره
صفحات -
تاریخ انتشار 2013